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Abstract—Shannon theoretic shared secret key generation by
multiple terminals is considered for a source model in which
the components of a discrete memoryless multiple source and
a noiseless public channel of unlimited capacity are available
for accomplishing this goal. A shared secret key is generated
for distinct coalitions of terminals, with all the terminals co-
operating in this task through their public communication. A
communication from a terminal can be a function of its observed
source component and of all previous communication. Member
terminals of a coalition unite in recovering the key. Secrecy
is required from an eavesdropper that observes the public
interterminal communication. A single-letter characterization of
the shared secret key capacity is obtained. When the key must
be concealed additionally from subsets of coalition members, we
provide an upper bound for the strict shared secret key capacity.

I. INTRODUCTION

Suppose that terminals 1, . . . , m observe distinct but corre-
lated signals, following which all the terminals can communi-
cate interactively over a noiseless public channel of unlimited
capacity, with the communication being observed by all the
terminals. A communication from a terminal can be a function
of its own observed signal and of all previous communication.
The goal is to generate a shared secret key (SSK), i.e., secret
common randomness of near uniform distribution, for given
coalitions A1, . . . , Al of terminals in M = {1, . . . , m} of
the largest rate possible, with secrecy being required from an
eavesdropper that observes the public interterminal commu-
nication; member terminals constituting a coalition unite in
forming the key for the coalition from the cumulation of their
observed signals and the public communication. A more severe
requirement calls for an SSK to be recoverable by a coalition
only through the concerted action of all its member terminals;
any smaller subset of the coalition must fail to recover the
key. Such a restricted SSK is termed a strict shared secret
key (S*SK). All the terminals in M cooperate in generating
an SSK for the secrecy-seeking coalitions A1, . . . , Al. The
resulting SSK can be used for encrypted communication by
terminals as legitimate members of a coalition but not of a
poseur subset.

We consider Shannon theoretic secrecy generation in this
new setting which is in the spirit of early work by Shamir [10]
on “secret sharing” that generalized a problem considered by
Liu [6]. In [10], it was shown how data D, i.e., a “secret,”
could be divided into n pieces Di, i = 1, . . . , n, in such a
manner that D was efficiently computable from a knowledge
of any k or more pieces Di, but could not be deduced from a
knowledge of any k − 1 or fewer pieces.
Our multiterminal source model for SSK generation with

public communication builds on our prior work on secret key
(SK) generation [4], [5]. The fact that secrecy generation could
be enhanced by public communication was first illustrated
by Maurer [7]. Models for secrecy generation which entailed
two terminals communicating over a noiseless public channel,
were examined in detail by Maurer [8] and Ahlswede and
Csiszár [1]. These models involve either a discrete mem-
oryless multiple source with two components accessible to
one terminal each, or a discrete memoryless channel with
one input terminal and one output terminal. In both types of
models, an additional “wiretapped” terminal may or may not
be present. The sumptuous literature on such models includes,
in particular, [9], [2], [3], [4], [5], that are of direct relevance
to the present work. A single-letter characterization of the SK
capacity – the largest rate at which a SK can be generated – is
known in special cases, e.g., when an additional “wiretapped”
terminal is absent or when the wiretapped terminal reveals
itself to the parties generating secrecy.
We restrict ourselves to models where all the terminals inM

cooperate in generating an SSK for the coalitions A1, . . . , Al,
with secrecy being required from the eavesdropper which has
access to only the public interterminal communication. An
S*SK additionally must be kept secret from each subset of
every coalition. We assume the eavesdropper to be passive,
i.e., unable to tamper with the communication of the legitimate
terminals.
Our main contributions are two-fold. First, we give a single-

letter characterization of SSK capacity which is derived based
on general techniques developed in our previous work on SK
capacity [4], [5]. Second, we provide an upper bound on S*SK
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capacity that is obtained using our previous characterization of
private key (PK) capacity in the same cited works. By way of
comparison, we also provide a single-letter characterization
of team secret key (TSK) capacity for the circumstance in
which member terminals in each set Aj , j = 1, . . . , l, act as
a unified team in the stages of public communication as well
as key recovery.
Preliminaries and the problem formulation are contained in

section II. Our main results are presented in section III.

II. PRELIMINARIES

Let X1, . . . , Xm, m ≥ 2, be rvs with finite alphabets
X1, . . . ,Xm, respectively. For A ⊂ M = {1, . . . , m}, we
denote XA = (Xi, i ∈ A). We shall denote n i.i.d. repetitions
of XM = (X1, . . . , Xm) by Xn

M = (Xn
1 , . . . , Xn

m), and of
XA by Xn

A = (Xn
i , i ∈ A). All logarithms and exponentials

are with respect to the base 2.
We consider a multiterminal source model for secret sharing

with public communication. In this model, the components
of a discrete memoryless multiple source with generic rvs
X1, . . . , Xm are observed respectively by m different termi-
nals. Thus, with observation length n, terminal i observes
Xn

i , i ∈ M. Randomization at the terminals is permitted; we
assume that terminal i generates an rv Ui, i ∈ M, such that
U1, . . . , Um and Xn

M are mutually independent. The terminals
are allowed to communicate over a noiseless public channel
of unlimited capacity, possibly interactively in several rounds.
Formally, assuming without any loss of generality that the
communication of the terminals in M occurs in consecutive
time slots in r rounds, such communication is described in
terms of the mappings

f11, . . . , f1m, f21, . . . , f2m, . . . , fr1, . . . , frm,

with fti corresponding to a message in time slot t by terminal
i, 1 ≤ t ≤ r, 1 ≤ i ≤ m; in general, fti is allowed to
yield any function of (Ui, X

n
i ) and of previous communication

described in terms of {ft′i′ : t′ < t, i′ ∈ M or t′ = t, i′ < i}.
The corresponding rvs representing the communication will be
depicted collectively as

F = {F11, . . . , F1m, F21, . . . , F2m, . . . , Fr1, . . . , Frm}.
For our purposes, it transpires that noninteractive commu-

nication without recourse to randomization suffices, i.e., with
F = (F1, . . . , Fm), where Fi = fi(Xn

i ), i ∈ M.
We consider coalitions of terminals from M given by dis-

tinct sets Aj ⊂ M, Aj �= M, j = 1, . . . , l, with intersections
possible among coalitions and Aj �⊂ Aj′ , 1 ≤ j �= j′ ≤ l.
The following concepts introduced in [4], [5] will be

used. Given ε > 0, a rv U is ε-recoverable from V if
Pr{U �= f(V )} ≤ ε for some function f(V ) of V . For
rvs K and Y , to be interpreted as representing a secret and
the eavesdropper’s knowledge, respectively, the information
theoretic security index is

s(K; Y ) = log |K| − H(K|Y ),

where K is the set of possible values of K. Smallness of
this security index is tantamount jointly to a nearly uniform
distribution for K (i.e., log |K| − H(K) is small) and to the
near independence of K and Y (i.e., the mutual information
I(K ∧ Y ) is close to 0).

Definition 1. Given any distinct sets Aj ⊂ M, Aj �= M, j =
1, . . . , l, an rv K = K(Xn

M) constitutes an ε-shared secret key
(ε-SSK) for the coalitions Aj , j = 1, . . . , l, achievable with
randomization UM and public communication F if K is ε-
recoverable from (UAj , X

n
Aj

,F) for each j = 1, . . . , l, and, in
addition, it satisfies the secrecy condition

s(K;F) ≤ ε. (1)

An ε-SSK as above is called an ε-strict shared secret key (ε-
S*SK) if it satisfies the stronger secrecy condition

s(K;F, Xn
D) ≤ ε, D ⊂ Aj , D �= Aj , j = 1, . . . , l. (2)

By definition, an ε-SSK is recoverable concertedly by every
coalition Aj , j = 1, . . . , l, and is nearly uniformly distributed
and effectively concealed from an eavesdropper with access to
the public communication F. It need not be concealed from
terminals that constitute (proper and nonempty) subsets of the
coalitions, namely {D : D ⊂ Aj , D �= Aj , j = 1, . . . , l},
or from the terminals in M\⋃l

j=1Aj (if nonempty). An ε-
S*SK constitutes a more stringent version where the key K
is recoverable only by each complete coalition but remains
concealed from every smaller subset thereof. We stress that in
the definitions of SSK and S*SK, the public communication
of any terminal, say terminal i in M, is a function (only) of
(Ui, X

n
i ) and of all previous public communication as above;

however, the key K is recovered jointly by all the terminals
in a coalition, say Aj , from the cumulation of (UAj

, Xn
Aj

,F).

Definition 2. A number R is an achievable SSK (resp. S*SK)
rate for the coalitions Aj , j = 1, . . . , l, if there exist εn-SSKs
(resp. εn-S*SKs) K(n) achievable with suitable randomization
UM and public communication F(n), such that

εn → 0 and
1
n

log |K(n)| → R as n → ∞, (3)

where K(n) is the set of possible values of K(n). The
largest achievable SSK (resp. S*SK) rate for Aj , j = 1, . . . , l
is the SSK (resp. S*SK) capacity CSSK(A1, . . . , Al) (resp.
CS∗SK(A1, . . . , Al)).

Remarks: (i) The definitions above are analogous to those
for an SK for a multiterminal source model in [4], [5]. In the
latter model, given a set A ⊂ M, an SK K must be recovered
by every terminal i in A from (Ui, X

n
i ,F) where the public

communication F is as above.
(ii) Our achievability result for an SSK holds with εn

decaying to 0 exponentially rapidly, yielding a “strong” key
[9], [2], [3], while the converse stands under the weaker
requirement that εn = o(n) [8], [1].
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It is of interest to compare SSK capacity with that of a
multiterminal source model in which the distinct sets Aj ⊂
M, Aj �= M, j = 1, . . . , l, represent teams of unified
terminals. Now, the public communication among the teams is
as above, possibly interactive and conducted in several rounds,
but with each team playing the consolidated role of all its
member terminals. Specifically, the public communication of
team Aj is allowed to be any function of (UAj

, Xn
Aj

) and of
all previous public communication, while the communication
of a terminal i ∈ M\⋃l

j=1Aj (if nonempty) remains a
function of (Ui, X

n
i ) and of all previous communication. Such

communication will be depicted collectively by FT .

Definition 3. Given any distinct sets Aj ⊂ M, Aj �= M, j =
1, . . . , l, an rv K = K(Xn

M) constitutes an ε-team secret
key (ε-TSK) for the teams Aj , j = 1, . . . , l, achievable with
randomization UM and public communication FT as above if
K is ε-recoverable from (UAj

, Xn
Aj

,FT ) for each j = 1, . . . , l,
and, in addition, it satisfies the secrecy condition (1) with FT

in the role of F. The corresponding largest achievable TSK
rate is the TSK capacity CTSK(A1, . . . , Al).

Clearly,

CS∗SK(A1, . . . , Al) ≤ CSSK(A1, . . . , Al)
≤ CTSK(A1, . . . , Al). (4)

III. RESULTS

Our main results, stated as Theorems 1 and 2 below,
provide a single-letter characterization of SSK capacity
CSSK(A1, . . . , Al) and an upper bound for S*SK capacity
CS∗SK(A1, . . . , Al), respectively. Their proofs rely on our
general techniques developed in [4], [5]. The single-letter
formula for TSK capacity CTSK(A1, . . . , Al) in Proposition
3 is an immediate consequence of [4], [5].
In order to describe our results, the following notation will

be used. For Aj ⊂ M, Aj �= M, j = 1, . . . , l, let

B(A1, . . . , Al) ={
B ⊂ M : B �= ∅, Bc ⊃ Aj for some j ∈ {1, . . . , l}

}

and Bi(A1, . . . , Al), i ∈ M, its subset consisting of those
B ∈ B(A1, . . . , Al) that contain i. Note that B(A1, . . . , Al)
comprises those nonempty subsets of M that do not in-
tersect simultaneously all the coalitions A1, . . . , Al. Let
Λ(A1, . . . , Al) be the set of all collections λ = {λB : B ∈
B(A1, . . . , Al)} of weights 0 ≤ λB ≤ 1, satisfying∑

B∈Bi(A1,...,Al)

λB = 1 for all i ∈ M.

Similarly, for a nonempty D ⊂ Aj , D �= Aj for some
j = 1, . . . , l, let

B(A1, . . . , Al|D) ={
B ⊂ Dc : B �= ∅, Bc ⊃ (Aj\D) for some j ∈ {1, . . . , l}

}
.

The set Λ(A1, . . . , Al|D) of collections of weights λ =
{λB : B ∈ B(A1, . . . , Al|D)} is defined analogously as
above with the roles of B(A1, . . . , Al) and M now played
by B(A1, . . . , Al|D) and Dc, respectively.
Our first result provides a single-letter characterization of

SSK capacity. Its form is redolent of the expression in [4], [5]
for the SK capacity for a set of terminals A ⊂ M in which
a central role was played by the smallest rate of interterminal
“communication for omniscience” (CO rate) that enabled all
the terminals in A to recover all of Xn

M. In an analogous
manner, the maximum rate of an SSK for the coalitions
Aj , j = 1, . . . , l, is intertwined with the smallest CO rate for
A1, . . . , Al, denoted RCO(A1, . . . , Al), namely the smallest
R such that, for suitable communication F(n) = (fi(Xn

i ), i ∈
M), and εn with

εn → 0,
1
n

log ||F(n)|| → R, (5)

Xn
M is εn-recoverable from (Xn

Aj
,F(n)) for each j = i, . . . , l.

Theorem 1. For a source model with generic rvs XM =
(X1, . . . , Xm), the (strong) SSK capacity for the coalitions
A1, . . . , Am, is

CSSK(A1, . . . , Al) = H(XM) − RCO(A1, . . . , Am), (6)

where

RCO(A1, . . . , Al) =

maxλ∈Λ(A1,...,Al)

∑
B∈B(A1,...,Al)

λBH(XB |XBc). (7)

Furthermore, SSK capacity can be achieved with noninterac-
tive communication and without recourse to randomization at
the terminals in M.

Our next result provides a single-letter upper bound for
S*SK capacity. For a fixed set D ⊂ Aj , D �= Aj with a given
1 ≤ j ≤ l, the largest achievable rate for Aj , j = 1, . . . , l of an
SSK that is concealed from the (cooperating) terminals inD, is
redolent of PK capacity [4], [5]. A subsequent minimum over
all such sets D yields an upper bound on CS∗SK(A1, . . . , Al).
We note that for a fixed D, the largest achievable rate of such
a “private” SSK with privacy from D, is inherently linked to
the smallest achievable CO rate for Aj , j = 1, . . . , l, when
each terminal i ∈ D reveals all of Xn

i ; the latter is denoted
by RCO(A1, . . . , Al|D). Such achievable CO rates are defined
with the obvious modification of that in (5) above, namely that
the communication in F(n) has to satisfy fi(Xn

i ) = Xn
i for

i ∈ D, and the rate condition applies to not all of F(n) but to
F̃(n) = (fi(Xn

i ), i ∈ Dc).

Theorem 2. For a source model with generic rvs
XM = (X1, . . . , Xm), the S*SK capacity for the coalitions
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A1, . . . , Am, is bounded above according to

CS∗SK(A1, . . . , Al) ≤

min
1≤j≤l

min
D⊂Aj ,D �=Aj

[H(XM|XD) − RCO(A1, . . . , Am|D)],

(8)
where

RCO(A1, . . . , Al|D) =

maxλ∈Λ(A1,...,Al|D)

∑
B∈B(A1,...,Al|D)

λBH(XB |XBc). (9)

Our third result is a single-letter formula for TSK ca-
pacity and follows directly from ([4], Theorem 1 and [5],
Theorem 3.1). It says that the TSK capacity for the teams
Aj , j = 1, . . . , l, is equal to the SK capacity for a
modified source model with generic rvs (XA1 , . . . , XAl

),
or (XA1 , . . . , XAl

, Xi′ , i
′ ∈ M\⋃l

j=1Aj) if M\⋃l
j=1Aj is

nonempty. The expression for TSK capacity involves the sets
BT (A1, . . . , Al) and ΛT (A1, . . . , Al) which are analogs of
similar terms in Theorem 1 above but with the difference that
B in BT (A1, . . . , Al) satisfies the additional requirement of
B

⋂
Aj being nonempty for any j implying B ⊃ Aj .

Proposition 3. For a source model with generic rvs XM =
(X1, . . . , Xm), the (strong) TSK capacity for the teams
A1, . . . , Am, is

CTSK(A1, . . . , Al) = H(XM) − RT,CO(A1, . . . , Am),
(10)

where

RT,CO(A1, . . . , Al) =

maxλ∈ΛT (A1,...,Al)

∑
B∈BT (A1,...,Al)

λBH(XB |XBc). (11)

Furthermore, TSK capacity can be achieved with noninterac-
tive communication and without recourse to randomization at
the terminals in M.

Lastly, we illustrate our results by the following elementary
example.

Example. Consider a source model with m = 3 terminals
in which X1 and X2 are independent binary rvs with each
distributed uniformly on {0, 1}, and X3 = X1 + X2 mod 2.
First, consider the case A1 = {1} and A2 = {2, 3}.

By [8], [1] or by Proposition 3, CTSK(A1, A2) = I(X1 ∧
X2, X3) = 1. With observation length n = 1 and with no
public communication, K1 = X11 of rate 1 constitutes a
perfect TSK (i.e., ε-TSK with ε = 0). Since K1 = X11 is

independent of X21 and also of X31, it also constitutes a
perfect S*SK and thereby a perfect SSK, both of maximal rate
by (4).
Next, consider the case A1 = {1, 2}, A2 = {2, 3} and

A3 = {1, 3}. By Proposition 3 or by ([4], Example 3),
CTSK(A1, A2, A3) is equal to the minimum of
I(X1, X2 ∧ X1, X2, X3),
I(X2, X3 ∧ X1, X2, X3),
I(X1, X3 ∧ X1, X2, X3)
and
1
2
[H(X1, X2)+H(X2, X3)+H(X1, X3)−H(X1, X2, X3)].

Hence, CTSK(A1, A2, A3) = 2. In fact, once again with ob-
servation length n = 1, it is easily seen that K2 = (X11, X21)
is a perfect TSK of rate 2, achievable without any public
communication. Hence, K2 is also a perfect SSK, and has
maximum rate by (4). However, it is clear that K2 cannot
serve as an S*SK.
Turning to S*SK capacity, a straightforward computation
shows that the upper bound in Theorem 2 is equal to 1.
Thus, CS∗SK(A1, A2, A3) ≤ 1. Observe that with n = 2,
K3 = X11 + X22 mod 2 is a perfect S*SK of rate 0.5.
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